Adding truth-constants to logics of continuous t-norms: Axiomatization and completeness results
نویسندگان
چکیده
In this paper we study generic expansions of logics of continuous t-norms with truth-constants, taking advantage of previous results for Lukasiewicz logic and more recent results for Gödel and Product logics. Indeed, we consider algebraic semantics for expansions of logics of continuous t-norms with a set of truth-constants {r | r ∈ C}, for a suitable countable C ⊆ [0, 1], and provide a full description of completeness results when (i) the t-norm is a finite ordinal sum of Lukasiewicz, Gödel and Product components, (ii) the set of truth-constants covers all the unit interval in the sense that each component of the t-norm contains at least one value of C different from the bounds of the component, and (iii) the truth-constants in Lukasiewicz components behave as rational numbers.
منابع مشابه
On Modal Expansions of Left-continuous T-norm Logics
Modal fuzzy logics is a research topic that has attracted increasing attention in the last years. Several papers have been published treating different aspects, see for instance [6] for a modal expansion of Lukasiewicz logic, [3, 4, 2] for modal expansions of Gödel fuzzy logic, [1] for modal logics over finite residuated lattices, and more recently [7] for a modal expansion of Product fuzzy log...
متن کاملFirst-order t-norm based fuzzy logics with truth-constants: Distinguished semantics and completeness properties
This paper aims at being a systematic investigation of different completeness properties of first-order predicate logics with truth-constants based on a large class of left-continuous t-norms (mainly continuous and weak nilpotent minimum t-norms). We consider standard semantics over the real unit interval but also we explore alternative semantics based on the rational unit interval and on finit...
متن کاملOn expansions of t-norm based logics with truth-constants
This paper focuses on completeness results about generic expansions of logics of both continuous t-norms and Weak Nilpotent Minimum (WNM) with truth-constants. Indeed, we consider algebraic semantics for expansions of these logics with a set of truth-constants {r | r ∈ C}, for a suitable countable C ⊆ [0, 1], and provide a full description of completeness results when (i) either the t-norm is a...
متن کاملOn Completeness Results for the Expansions with Truth-constants of Some Predicate Fuzzy Logics
In this paper we study generic expansions of predicate logics of some left-continuous t-norms (mainly Gödel and Nilpotent Minimum predicate logics) with a countable set of truth-constants. Using known results on tnorm based predicate fuzzy logics we obtain results on the conservativeness and completeness for the expansions of some predicate fuzzy logics. We describe the problem for the cases of...
متن کاملOn completeness results for predicate
In this paper we deal with generic expansions of first-order predicate logics of some left-continuous t-norms with a countable set of truth-constants. Besides already known results for the case of Lukasiewicz logic, we obtain new conservativeness and completenesss results for some other expansions. Namely, we prove that the expansions of predicate Product, Gödel and Nilpotent Minimum logics wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Fuzzy Sets and Systems
دوره 158 شماره
صفحات -
تاریخ انتشار 2007